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In his memoir “On the Energy of Storms’, Margules
devised methods for the calculation of the maximum
kinetic energy of atmospheric systems that can result
from the rearrangement of two air masses of differing
properties, from an initial unstable arrangement to one
possessing stability. Although his results show that the
kinetic energy made available by these processes is suffi-
cient to account for observed wind velocities, no attempt
was made by Margules to deduce the probable distribu-
tion of this kinetic energy within the air masses which
comprise the systems studied. In order to secure some
idea of the character that this distribution might be ex-
pected to assume, a problem similar in certain respects to

earth’s rotation on all the motions involved in the readjust-
ment? Also, what will be the distribution of velocities
generated by the action of pressure gradients and of
Coriolis forces within each mass of fluid?

In outline the changes that take place upon the transi-
tion to a state of equilibrium may be described as follows:
A portion of the denser fluid located in the region A in the
initial state will tend to be displaced to the right. Since
this displacement is accompanied by a Coriolis force acting
at right angles to the direction of motion, a transverse
horizontal velocity will be generated in this portion of
fluid. In a steady state this velocity must be accompanied
by a gradient of pressure which in this case is supplied by a
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F1GURE 1.—Two fluid masses in the initial state.

some of the cases treated by Margules will be formulated
and solved making use of a principle which may be alluded
to as that of conservation of absolute vorticity. Because
of the great complexities which arise in an attempt to deal
with a compressible atmosphere, attention will be con-
fined to a system composed of two homogeneous and in-
compressible fluids of slightly differing densities. It will
also be assumed in the treatment that all frictional effects
are absent.

Let it be supposed that in the initial state two masses of
fluid of differing densities lie side by side, at rest relative
to the earth, separated by a vertical plane as in figure 1,
with the lighter fluid to the right. The horizontal layer
thus formed is considered as being of uniform thickness
and extending an infinite distance to the right and *o the
left. The problem for which a solution is sought may be
stated as follows: Assuming no mixing of the fluids, what
will be the shape of the free surface and of the internal
boundary, if the system is allowed to come infinitely slowly
to equilibrium, taking into consideration the effect of the

! This paper i3 a report on an investigation which has been conducted at the Massa-

chusetts Institute of Technology in cooperation with the Weather Bureau under the
Bankhead-Jones Special! Research Fund,
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mutual adjustment of the slope of the free surface and of
the internal boundary separating the liquids. Likewise
a portion of the lighter fluid originally situated at B will
tend to move to the left, bringing about a transverse
velocity in the opposite sense. The requisite pressure
gradient in this case is produced by the deformation of the
free surface alone.

Due to the fact that continuity of depth must be
preserved throughout the layer, it must be assumed that
some lateral movement with resulting transverse velocities
must oceur in the regions farther to the left and to the
right, decreasing to zero at great distances from the
original discontinuity. It is now possible to schematically
represent the final state as in figure 2.

It thus appears that for the purpose of analysis the
system may be divided into three regions, regions I and
111 in figure 2 consisting of a single layer, while region I1
consists of two superimposed layers. The distances ¢ and a
are to be obtained as a result of the investigation. In the
above diagram the positive y direction is taken to the left
and the positive z direction as perpendicular to the plane of
the figure away from the reader, while the origin is located
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at 0. For convenience, the diagram is taken in the plane
of a meridian with the positive y direction extending north-
ward. In the Northern Hemisphere this leads to easterly
winds in the regions marked £ and westerly winds in the
region marked W. Since the equations of motion used in
meteorology are independent of the azimuthal orientation
of the axes, this choice of coordinates will not produce any
lack of generality in the results.

Restricting our attention for the present to region I, let
it be assumed that a column of fluid which in the initial
state was located at a point y,! and had a width dy,' and
a height D, is now located at a point y, has a width dy
and a height D!, The principle of continuity of mass gives
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In the above p, may be taken as the pressure at the sur-
face, for which the value goD* may be substituted. Sub-
stituting also for «! from (5),

dD?* 7
0=—fy—v) ~ 2" @
Substituting for % from (3),
D dl I
0=(y—yo‘)+gj—-_)° ar ®)

Since the quantities g, D, and f are considered constant in
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F1GURE 2.—Schematic diagram of the final state.

1 )1
pDodyo*=pD'dy () {his whole discussion and since the factor gf—Df recurs
duX 2) . . . .
or DlzDoTZ?,/yL @ frequently, a quantity A having the dimensions of a length

where ¢ is the acceleration of gravity and p is the density.
By differentiation,

D', ®
dy — 7 dy?

Indicating velocities in the x direction by ' and velocities
in the 7 direction by v the equation of motion for the
transverse velocity of the element, since no net external
forces are present, is

du' j 4
@I Ta v

where f is the Coriolis parameter 2 Q siné.
between the limits y,! and y

w'=fy—yo"). (5)
This implies that the velocities are constant with elevation
and therefore the pressure gradients must be independent
of elevation—a result which agrees with hydrostatical
considerations.
Since a steady state is assumed, in the final condition
the gradient wind equation must be fulfilled. For straight
line flow, this will be

Integrating

10dp (6)
0= —ful—= %2,
Ju p Oy

will be defined as follows, and substituted in the equations:

)\=i‘§.& (9)
Equation (8) now becomes,
2, 1
T+ ) =0, (10)
The solution of this equation is easily shown to be
Ay y
yOI:y+ QIG )\+ QIIIek (11)

In this equation @' and @' are constants of integration
which must be fixed by boundary conditions while e is
the Napierian base. Obviously Q' must be zero in region
I since the liquid is to be undisturbed at great distances
to the left. This is only possible if y',=1y for large values
of y. The value of ¢' on the other hand cannot be
determined at this point, but must be evaluated later,
simultaneously with the determination of other similar
integration constants for the remaining two regions.
The fundamental equation for region I, giving the lateral
change of position of a particle from the initial to the
final state may be written,

>

ZIOI:Z/+Q13_ (12)
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From this equation the velocity distribution may be
obtained by the aid of equation (5) and is found to be,

= —f Qe (13)

By differentiating (12) with respect to ¥ and combining
the result with (2) an expression for the shape of the free
surface results,

b
D‘=Du|:1 —%Q‘e"i:l (14)
Considering now the conditions in region III, an ex-
actly analogous line of reasoning may be followed as was
used above, and an equation comparable to (11) may
be set down,

¥ v
yDIII=y+QIe x_]l_QIIIe).. (15)

It is clear, however, that now the constant @' must be
zero since the fluid is not disturbed at great distances to
the right, and the fundamental equation for region III
becomes

§
Y=y + Qe>, (16)

The constant Q™! will be evaluated later.

Expressions for the velocity distribution and for the
shape of the free surface may be written immediately as
in the case of region I. These are respectively,

M= fQIIIe—)!" ,
pm 200[1 —|—%Q‘“e%].

Turning our attention to region II, the situation is more
complicated due to the presence of a double layer. Re-
taining the convention of indicating quantities referring
to the initial state by the subscript zero, and designating
quantities applying to the upper layer by primes, an
elemental vertical column extending from the surface to
the top will now be considered. Corresponding to equa-
tion (1), which specified the requirement of continuity of
mass, there are now two such equations:

(17)
and

(18)

o' Dy’ dys™ = p’ D™ dy, (19)
for the upper layer and
pDudy,"" = pD"dy (20)

for the lower layer. In these two equations a distinction
is made between the quantities D, and D,’. Although
according to the statement of the problem made pre-
viously these are equal, this simplification will not be
made at this point, in view of the possible application of
the equations derived to more general problems than the
one dealt with at present. Solving (19) and (20) for the
depths in the final state,

D :Do,dyon'

i 1)
and
ag 11
II:DO% @2)

Differentiating the above with respect to y
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dDIl' 'd2, 11 ,

=D (Z, ; 23)
and

d 11 i II

T =D d (24)

Corresponding to equation (5) there are two expressions
for velocity, namely

u =fy—u'"), (25)
and
W =fly—yet). 26)
We also have two gradient wind equations:
., 1 op,
0=—fulv—= Lz, 27
fur—= e @)
for the upper layer and
1 0p
0= —fur'— =~ L2 28
fur— (28)

for the lower. A question now arises as to the interpreta-
tion of p,” in equation (27). Since (27) involves only the
gradient of pressure and not the absolute value of the
pressure, the derivative appearing may be evaluated by
forming an expression. for the pressure distribution along
any level surface in the upper layer, and differentiating.
This can be done conveniently by considering the pressure
at a level surface situated at an arbitrary elevation Z.

Thus
P =g’ (DY +D"—Z), (29)

Differentiating and changing to ordinary derivatives,

D'y (4D D
dy =4gp dy + dy (30)
For the lower layer,
Po=00' D +gpD" (31)
and
. 11/ 184

dy ge dy dy

Substituting in equations (27) and (28) from (25) and
(26) and also from (30) and (32)

R dD™  dDM
0=—f*{y—y"')—y T +——dy ) (33)

and dDII/ DII
——pru—w) -~ A e

Substituting in the above two equations for the deriva-
tives of the depths the values given by (23) and (24),
we get:

, ’dQ, I’ d?, II
0=—ry—w)—g VIR +D I )
and

e {2 _ /p_, dg’!/om
0=~ y—v) — D% LU

dzyoll
+ D"_J?_/T] (36)

We thus finally have a pair of second order simultaneous
differential equations involving the single independent
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variable ¥ and two dependent variables y,""’ and ",
which must be solved. Customary methods of separating
the dependent variables lead to two fourth order equations
whose solutions contain eight constants of integration.
Rather than to pursue this course the separation of
variables will be effected as follows: ' Let the first equa-
tion be multiplied by an undetermined constant factor «,
so that the equations hawve the form,

) , &2y Ly 1
0= ey — o)~ aDy S+ DG |- 37

,lzy d2yoll

192, 11
0=—Fly—y") —QI:DO,% d,;z +Dy dy® ] (38)
Adding,
0=1ye" + oy’ — (1+ )y]
o oy Ayt .
—o[(B+a)oe B+ a+aD B )

Rearranging,
0=+ o™ — (1+ @)y

—ng(l—l—a)(%z—z[ II+% +a2.°’ ' | (40)
Y% 1+aD0

Let the value of & be now defined so as to make the coeffi-
cient of 1" in the first brackets equal to the coefficient
of 4™ in the second hrackets. This gives the relation

o= p'+pa Dy
p(l+a) Dy,

which has two roots,

._.__Do”‘Do' _1__J(Do“'l)o')2 4P'Do'
“= 2D0 +2 D02 + pDo (42)

o =__DL_£’:__1_\/(D0_D0')2+4P'D0’
2 .)Do 2 D02 pDo

-

(41)

and

(43)
Let two dependent variables A; and A; be defined by the

following:
A=y 4 ay™, (44)
A42:y011+ agyoul. (45)

Introducing these into (40) two equations in which the
variables are separated are obtained:

0= A;— (1+a1)y—gf—lzo(l+a1)(—§§z—l; (46)

0=, (1 ady— 151+ a) G5 @)
Introducing A and rearranging,

S — Tyl (L al=0; (48)

%%"(T--FIEW[AF (14 )yl =0, (49)

1 This procedure was suggested to the writer by Prof. C. G. Rossby.
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The solutions of (48) and (49) may be set down imme-
diately in the form

A=Q1+a)y+Kev+ Qe
A= (1+ ar)y+ Kz + Que™,

(50)
and
(61)

in which K, K, @, and Q. are constants of integration
and «, and x; are given by

1

S &2
. 1
W o

Reverting to the original dependent variables, y,"’ and
7", we have from (44) and (45)

d Ai— Ay= ayyg™ — oy =y (a1—ex), (54)
anc
Yo'’ ="3%_:“;2' (55)
17 (2
Similarly,
d A — iAo = g — ey =y (e — @), (56)
an
o=, 57)

Ky— g

Substituting in (55) and (57) from (50) and (51),

1 an[Kle"v —_ I{zﬂ"” + Qle"”’ — Qge_“y]; (58)

[+ S inane

w=y+
and

1
Yo' =y+

a—ay

[agKle""— alee"”-}— ange“‘”—— ange_“”]. (59)

Let the simplification now be made that D'y=1D,.
From (42) and (43) it is seen that

o
a=+/; (60)
p
o
=—f 61
[25] \/P ( )
In other words we may say that
=
al:—a2:a—_—\/p_. (6‘3)
p

The final form of the fundamental equations for region II
thus becomes,

v =y+ 51; [Kien? — Kemt + Que™ " — Que™"],  (63)

Yl=y+ % [Kieov 4 K+ Q™+ Q™). (64)

By the aid of (25) and (26) expressions for the velocities
in the two layers are obtained:

w=—2- [Ken?— Kpen' + Qe ™" — Qre™4],

20’

(65)

= —d[ Kot Koot Qe+ Quem.

2

(66)
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By means of (22) and (64) the position of the internal
boundary may be specified:

D“=Do[1 +%(lele‘lv+ Koxsers? — Qurie™ =¥ — Q2K2e—"y)]' (67)

The thickness of the upper layer can be obtained in a
gimilar manner from (21) and (63):

Dw =Do[1 + Q%(K;Kle'l”— KszC"y — Q]Kle_'l”+ Qzl(ze-—"v)]' (68)

The shape of the free surface is given by the sum of D'’
and D" for each value of y.

Having derived the fundamental equations (12) and (16)
forregions I and ITI, respectively, and (63) and (64)for region
I11, it is next necessary to determine simultaneously the
six integration constants @', @', K,, K,, ¢, and ¢; and
also the constants ¢ and ¢. In order to accomplish this it
is necessary to have eight equations not involving the
independent and dependent variables. By examining
the requirements at the two vertical boundaries separating
the three regions it will be seen that there exist exactly
eight independent boundary conditions which can be inter-
preted in the form of the eight required equations.

Taking first the vertical at y=0 in figure 2, the fluid in
the upper layer of region Il at this point originally was
located at the discontinuity, hence the condition exists

that when
y: 0 }.
yOII'= —a

Also it was assumed that at this point the thickness of the
upper layer of region II becomes zero, hence according to
(21) when

(69)

y=0
dyon’-
dy =0
Since the fluid in region T is in contact with the fluid in the

lower layer of region II at y=0, there must be continuity
in the displacements at this point so that

y=0 }
yolzyo"

Finally, since the depth of the fluid in the lower layer of
region 11 must be the same as that of region I at this point,
we have from (2) and (22)

(70)

(71)

y=0
dys' _ dyo"'| (72)
dy  dy

At the vertical boundary between regions 1l and III
there exist four additional conditions which are com-
parable to the four already given. Expressing the dis-
placement of the lower layer of region II at this point, we
have the condition

y= "’]- (73)

yi'=—a
The vanishing of the thickness of the lower layer gives the
condition that

et _ (74)

y=—¢l
. dy
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Continuity of displacements gives the relation that when
y=—c¢

yom=y0n' )

Finally again continuity of depth gives the condition

(75)

(76)

y=—c
dy™ _ dyo™r-
dy dy

Imposing these eight boundary conditions in the order

given upon the fundamental equations (12), (16), (63),
and (64), there result the eight equations written below:

~tam 31Ky~ Kt Qi — Q) 1)
—a=%[K1Kl——K2K2—~Q1x1+ngz] (78)
QX=%[K1+K2+ Q1 +Q:] (79)

1 1
“'XQI= §[K1K1+K2K2— QlKl_ 2] (80)
c— azé[Kle“n‘—i—Kze"a‘-}— @164+ Qaenf (81)
—1 =%[K1xle"l‘+ Koxse™5°— Quei1€"1°— Qoraen]  (82)
aQiite *=1[Kie e Kot Quen—Quo]  (83)

[
an%e )‘=-21-[le16—‘1°—1&’21(26_‘:°——Qme“l‘+ Qoxzen]  (84)

It will be noted that all the constants enter these equations
linearly except ¢, which is contained both linearly and
exponentially. It is therefore possible to eliminate the
six constants of integration and a algebraically, the result
being a single exponential equation in ¢ which can be
solved by trial for any particular numerical example.
When this has been accomplished, the remaining con-
stants may be determined without difficulty. The actual
process of carrying out the elimination hecomes rather
involved, however, and it would not be practical to
reproduce the necessary steps in this discussion.

From the relation expressed by (62) it is seen that the
solution of the entire problem depends in no way upon
the absolute values of the densities but only upon their

Taking a figure of 0.960,788 for this ratio,

a, «', and «? have the following values:

ratio 2-.

a=0.980,198
_0.710,634
K1 7x
__7.106,335
K _———)‘

’
This particular choice of 2 makes , exactly ten times
larger than x, which simplifies the calculation slightly.
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Corresponding to these conditions the eight constants to
be determined assume the numerical values given below
in terms of A. It will be found that these figures satisfy
the last eight equations sufficiently closely for practical
purposes.

c=-0.336,10n

a=-+0.159,07x
Q"= +40.009,08)
QUI=0.010,782
K,—=—0.769,48)\
K.=+40.150,86)
Q,=-0.622,61
Q.=-+0.014,20)

Inserting these figures in the expression for the depths
discussed previously, and assuming a value of D, equal
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right of the free surface and the generation of mild easterly
winds as shown in the velocity diagram. In region I1I
there is also a shift of the fluid to the right amounting
to 0.00771A at y=—0.3361A and decreasing to zero for
large negative values of y. This causes a piling up of
the fluid in this region so that the free surface again
slopes downward to the right and provides the necessary
Coriolian pressure gradient for the mild easterly winds
indicated on the velocity chart. In region II the original
discontinuity M is located at y=—0.15907A. In the
lower layer there exist easterly winds which at the
boundary y=0 are equal in intensity to those in region
T at this point, since continuity of displacement exists at
the boundary. Farther to the right these increase rap-
idly and reach a maximum at the point y=—0.3361A.
The Coriolian pressure gradient, as already mentioned,
is here provided by the inclination of the internal boundary
and of the free surface.

In the upper layer the lateral displacement of the verti-
cal columns may be thought of as the sum of two effects.

hm, -26922
_____________ 8, ___
E
61
P 4 P'=96p
E E
2+
\] . s N :
N 2% . 0 -3 - -5 b T
=33610A

104 VELOCITIES UPPER LAYER

s

20

VELOCITIES LOWER LAYER

A =\gDo - (2800km)
ix=(2go£"— )

sec

FIGURE 3.—Readjustment of two air masses under conservation of vorticity.

to the height of the homogeneous atmosphere which is
taken to be eight kilometers, the shape of the free surface
and of the internal boundary may be plotted. In this
way the diagram reproduced in figure 3 is obtained. In
middle latitudes the value of N\ is approximately 2,300
km., which gives a horizontal scale for the diagram.

Likewise the velocities may now be obtained. These
are also plotted in figure 3, the unit of velocity being F\
which in middle latitudes has the approximate value of
280 meters per second. The directions are taken as
corresponding to the Northern Hemisphere.

The general features of the final state may now be
described as follows: Beginning with region I, there is
here a shift of the fluid to the right amounting to 0.00908X
at the point y=0, and decreasing with increasing posi-
tive values of y. This leads to a slope downward to the

In the first place, since there is a shift of the fluid in
region ITI to the right, and since there must be continuity
of displacement at the vertical boundary, the liquid in
the upper layer in the vicinity of the boundary must
take part in this motion to the right. Secondly, the
vertical shrinking of the fluid columns from the original
height D, to that shown on figure 3 must lead to a dis-
placement to the left in order to preserve continuity of
volume. Because these two effects oppose one another,
there must exist a vertical in the upper layer of region
IT at which the displacement, the velocity, pressure
gradient and slope of the free surface are all zero. By
setting y,"=1v in equation (63) this vertical is found to
be at y=-—0.2692\. It is also apparent that the eleva-
tion of the free surface must reach a maximum at this
point. This turns out to be 8.064 km., or 64 meters
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above the initial depth of the fluid layer. The velocities
for the upper layer are as shown, being mild easterly
to the right of this vertical and increasing westerly to
the left. The free surface has an increasing slope down-
ward to the left, the depth reaching a minimum at y=0
where the wvalue is 7.927 km. or 73 meters below the
initial depth.

Having obtained a description of the equilibrium state,
it becomes a matter of interest to examine the energy
changes that must occur during the transition. Initially
the system possesses no kinetic energy, but has a certain
amount of potential energy of mass distribution. In the
final state a certain kinetic energy of transverse circulation
exists, while the potential energy is less than originally.
It is now proposed to make a quantitative calculation of
these energy changes.

The change of potential energy between the two states
in region I may be expressed in the form of the following
integral; energy rendered available being reckoned as

positive:
>/Dy DF
ﬂ (7 5 JpgDdy.

Upon substitution for D' from (14) and integration be-
tween the limits indicated it is found that this quantity
assumes the value of 0.004,519 pgD,®\. Taking cognizance
of the fact that one dimension of length is suppressed, it
will be seen that this quantity has the dimensions of
energy.

The corresponding integral for region III gives the
result that the change in potential energy is —0.003,866
p'gD*\ or —0.003,714 9D\,

In region II it is convenient to calculate the change in
potential energy for each layer independently. In the
lower layer an integral of the form of (85) may be applied
directly, although the integration is more laborious than
in regions I and III. The result is that the change in

(85)

potential energy is equal to 0.030,442p¢0,*\. For the
upper layer the integral has the form
0 11/
[l 2= (om0 ) prapmay. o)
—0.3361 L = 2,

The evaluation of this quantity gives as a result —0.031,-
1740’ gD\ or —0.029,952 09D\,
Summing for the three regions the net change in
potential energy turns out to be +0.001,295p9D,%\.
The kinetic energy of the transverse circulation for
region I may be expressed in the form of the integral,
f‘”uﬂpDIdy, (87)
0 2

<~

which turns out to have a value of 0.000,020 pf?D,\.
The unit of energy appearing here will he seen to be
equivalent to that occurring in the calculation of potential

energy if the value of 0_1270 be substituted for A% Cor-

responding integrals may be set up for the remaining
regions, giving the result that the kinetic energy is
0.000,150o*D,2* and 0.000,257of*Dy\® for the upper and
lower layers of region II, respectively, and 0.000,029
pf?DyA?* for region III. Summing for the three regions,
the total kinetic energy of transverse circulation for the
system becomes 0.000,4560f2D,\%.

Comparing this figure with that for the potential energy
liberated during the readjustment, it is seen that the latter
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is about three times as large as the former, and the ques-
tion arises as to the physical meaning of the large differ-
ence between these quantities. Tt will be recalled that in
the original statement of the problem the assumption was
made that the transition from the initial to the final state
proceeds infinitely slowly. Under these conditions it is
permissible to neglect all accelerations in the y direction
so that the system arrives at the equilibrium state without
any finite velocities in the y direction.

Had this restriction not been made, but instead the
readjustment allowed to take place at its natural rate, the
solution obtained above would no longer describe com-
pletely the conditions when the system arrives at the
equilibrium state. In addition to the transverse velocities
in the x direction there would also exist finite velocities in
the y direction. By virtue of these velocities the read-
justment would proceed beyond the equilibrium state,
then reverse its direction and the system would continue
to oscillate about the equilibrium position. It appears
that the fraction of the potential energy liberated which
is not used to establish a transverse circulation represents
energy of inertia oscillations whose character, however,
cannot be in any way determined from this investigation.

It remains to be pointed out, however, that in general
differences in density in the atmosphere are set up largely
by gradual radiative processes, and that readjustment of
actual atmospheric systems takes place simultaneously
with the slow establishment of density differences. For
this reason readjustment processes must automatically
take place on a nearly quasistatic basis, passing through
an infinite number of equilibrium stages, and arriving at
the final state without appreciable energy of oscillation.
Under these conditions the amount of heat energy re-
quired to bring about the change in density is less than
would be required if the heating and expansion took place
prior to the readjustment of mass distribution.

As a variation of the above problem it would be of
interest to determine the changes that would be produced
if a third mass of relatively lighter fluid overlies the two
overturning air masses. Strictly speaking, since there
would be upon readjustment a deformation of the internal
boundary between the two layers thus formed, lateral
convergence and divergence accompanied by the genera-
tion of weak transverse citculation and also a deformation
of the free surface should be expected in the upper layer.
If, however, the upper layer is relatively deep, these
effects would be sufficiently small to be neglected, the
upper layer being considered at rest with a level surface
in the final state as well as initially.

An examination of the conditions imposed by the addi-
tion of such a layer shows that almost the same funda-
mental equations as were previously derived will serve to
specify the solution of a problem of this type, provided
that for each set of densities chosen, the initial depths of
the two air masses comprising the lower layer bear a
given fixed ratio to each other. We may thus represent
the initial (dashed lines) and final states schematically
as in figure 4.

In region I the pressure at the surface may be expressed
as follows:

po=pD"+p" (Dy’—D") +p, (88)

where p, is the pressure at the level Iy’. When this is

differentiated with respect to v,
op,__ w OD"
by“(P P ) ay . . (89)
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F1GURE 4.—Schematic representation of final state of system containing three alr masses.

Incorporating this expression for the pressure gradient in
equation (6) and proceeding as in the previousproblem,
the fundamental equation for this region is found to be,

Yor=y+ Qe i (90)
in which AT is now defined as
p_p//
xl=\/gD° 0 . (91)

J

Exactly similar considerations lead to the following
fundamental equation for region III,

y =y -+ Qmeﬁ% (92)
where A™ is given by
—
D22
111 \/g ’ p,
A =—“—f—’ (93)

In region II the pressure gradlents may be obtaired
from the following expressions for p,” and p,:

pﬂrzgp/(DII_I_DII'_Z)+gp/r(DO/_DH_DH,)_+_pm <94)
Po=9pD"+gp’ D' +gp” (Dy/ ~D"—D") +p..  (95)
Differentiating these
bp,'_ oD E)D“') D™ oD,
ay 7oy oy )" oyt oy ) (96)
oD, oD oD # D™
97
Oygby+gbygpby 97)

Carrying out similar operations as previously, an equation
comparable to (40) is obtained:

0=Flye+ age — (1-+a)y] —gDo[

(p —p”
p

II
+ (p e’ p-—p

p—

) “’] (98)
p o’

Again defining a by equating the coefficients of y(,”’ and
solving, the following equation results:

!

] o

1Dy _p'(p—p") [D_c/__p'(p—p")r_l_‘lp’Do
21D, ~ p(p’—0") Dy p(p"—p") pDy
If now the fundamental equations for region II are to
have the same form as (63) and (64), it is necessary that
the roots of this equation differ only as to sign, as was the
case previously. 'This imposes the condition that

Dy p'(p— p")_o
Dy p(p'—p")

Retaining the same ratio of densities in the lower layer
as was used in the first problem and assuming that p’’=

(100)

0.80p, the value of the ratio g
(1]
The quantity a« now becomes equal to ppg" » while the
0
constants «;, x;, and \ are defined as follows:
o= 1
1= 7 7 w
O Lt W St ) (101)
p + r
- 1
2T 77 T 17
)‘_\/p pp N p’p N (102)
x=1/2f21 (103)

The condition (100) also causes A to be equal to N,
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The determination of the constants to be fixed by
boundary conditions can be done in almost exactly the
same manner as before, leading to the numerical values
given below:

¢=-0.338,15\
a=-0.180,20\
Q'=—0.007,12\
Qmr=—0.027,72\
K;=—0.425,19\
K,=+0.171,17x
Q= 4-0.224,97)
Q.=+0.014,81x

The expressions for the depths and for the velocities are
formed as previously, and if the results are plotted on the
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SUMMARY

1. If, on a rotating earth, a layer of incompressible fluid
of uniform depth and infinite horizontal extent composed
of two motionless fluid masses of differing density and
separated initially by a plane vertical partition, is allowed
to readjust itself slowly upon removal of the partition, the
system will come to a state of equilibrium in which the two
masses are separated by an inclined boundary sloping
downward toward the lighter fluid mass, and in which the
free surface is deformed in such a manner that the maxi-
mum depth occurs at a point above the internal boundary
and the minimum depth at the point where the thickness
of the lighter fluid becomes zero. In obtaining this result
and those that follow, all frictional effects as well as mixing
at the mutual boundary of the fluids, are assumed to be
absent. The Coriolis parameter is not assumed to vary
For an initial

within the dimensions of the system.

VELOCITIES UPPER LAYER

=151

—20+

VELOCITIES LOWER LAYE

A=VgDo =(2800km)

,6-,\= (280 o

FI1GURE 5.—Readjustment of three air masses under conservation of vorticity.

same scale as before the diagram shown in figure 5 is
obtained. It is seen that now a weak west wind prevails
in regions I and TIT and also in the left portion of the lower
layer of region II. The upper layer now has a continuous
distribution of westerly winds, while the right hand por-
tion of the lower layer in region II has easterly winds with
velocities as shown. The initial state is shown by the
dashed lines.

In concluding, it might be remarked that the above
analyses depend essentially upon the fact that in an in-
compressible fluid of uniform density, that is, in a homo-
geneous and incompressible fluid, there can be no variation
of gradient wind with elevation. This is also true for a
bomogeneous and compressible fluid such as an adiabatic
atmosphere. It should therefore be possible, at least in
theory, to carry out a similar calculation for a system
composed of two air masses each having a constant poten-
tial temperature.

depth of 8 km. and a ratio of densities equal to 0.96 the
shape of the free surface and internal boundary is given
by figure 3.

2. Due to the action of pressure gradients and Coriolis
forces during the readjustment of the above system, hori-
zontal velocities parallel to the original discontinuity will
be set up. The distribution of these velocities will be
such that if in the Northern Hemisphere the discontinuity
is imagined, for the purpose of reference, as extending
from east to west with the lighter fluid to the south,
easterly velocities will appear in the denser fluid, decreas-
ing to zero at great distances to the north and increasing
southward to a maximum at the point where the thickness
of the heavier fluid becomes zero.

In the lighter fluid the velocity will be zero at great
distances to the south and also along the vertical at which
the elevation of the free surface is a maximum. To the
south of this vertical the velocities will be mild easterly,
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having a maximum above the point where the internal
boundary intersects the lower surface of the layer. To
the north of this vertical, westerly velocities increasing
northward will prevail, reaching a maximum at the point
where the thickness of the lighter fluid becomes zero.
Within each mass of fluid there will be no variation of
velocity with elevation. A graph of the velocities for s
density ratio of 0.96 and an initial depth of 8 km. is given
in figure 3. The unit of velocity used is a function of
geographical latitude and amounts to about 280 meters
per second in middle latitudes.

3. In the above system there will be a decrease of
potential energy of mass distribution during the read-
justment. Also, there will exist in the final state a certain
amount of kinetic energy represented by the velocity dis-
tribution already described. Computation on the ex-
ample already cited shows that the amount of potential
energy set free is nearly three times as great as the kinetic
energy represented by the circulaiton set up. The
difference between these two quantities is accounted for by
the fact that the readjustment was assumed to take place
slowly on a quasistatic basis, implying the existence of an
external retarding agency which absorbs a portion of the
potential energy rendered available.

If the process is considered as taking place at its natural
rate, the system will then arrive at the equilibrium point
with a certain amount of kinetic energy of oscillation. If
this additional kinetic energy is included, the sum of
potential and kinetic energy for the system remains con-
stant at all stages of the process. The character of the
oscillations performed by the system cannot be deter-
mined from this analysis. However, it is probable that in
the actual atmosphere density differences are generally set
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up gradually, so that readjustment processes automati-
cally proceed in an almost quasistatic manner, and energy
of oscillation does not appear to a significant extent.

4. A problem comparable to the above but involving
the presence of a third mass of fluid overlying the system
can be treated by almost exactly the same mathematical
set-up save for numerical values as was used in the first
analysis, provided that the depth of the third mass is
relatively large in comparison with the other two, and that
the initial depths of the first two masses bear the following
relation to the densities chosen:

Dy _p'(o—p")

Dy o0 —0")
where D, and D,” are the depths of the heavier and lighter
fluids respectively and p and p’ their densities, while p’’ is
the density of the third mass.

Taking the same value for the ratio of densities in the
lower two masses and assuming a value of p”’ equal to
0.80 p, and a value of 8 km. for D,, the result shown in
figure 5 is obtained. The diagram is to be interpreted in
the same manner as figure 3.

The writer wishes to acknowledge his indebtedness to
Prof. C. G. Rossby of the Massachusetts Institute of
Technology for suggesting this investigation, and for the
continual assistance and encouragement which he so
gladly gave. The underlying principles involved in this
work form a part of the material covered by Professor
Rossby in his lectures at the Institute which the author
has had the pleasure to attend. Also, the author desires
to express his appreciation of the help rendered by R. D.
Fletcher in reading the manuscript and checking the
numerical work.
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